Clustering with Hidden Markov Model on Variable Blocks
نویسندگان
چکیده
Large-scale data containing multiple important rare clusters, even at moderately high dimensions, pose challenges for existing clustering methods. To address this issue, we propose a new mixture model called Hidden Markov Model on Variable Blocks (HMM-VB) and a new mode search algorithm called Modal Baum-Welch (MBW) for mode-association clustering. HMM-VB leverages prior information about chain-like dependence among groups of variables to achieve the effect of dimension reduction. In case such a dependence structure is unknown or assumed merely for the sake of parsimonious modeling, we develop a recursive search algorithm based on BIC to optimize the formation of ordered variable blocks. The MBW algorithm ensures the feasibility of clustering via mode association, achieving linear complexity in terms of the number of variable blocks despite the exponentially growing number of possible state sequences in HMM-VB. In addition, we provide theoretical investigations about the identifiability of HMM-VB as well as the consistency of our approach to search for the block partition of variables in a special case. Experiments on simulated and real data show that our proposed method outperforms other widely used methods.
منابع مشابه
Abnormality Detection in a Landing Operation Using Hidden Markov Model
The air transport industry is seeking to manage risks in air travels. Its main objective is to detect abnormal behaviors in various flight conditions. The current methods have some limitations and are based on studying the risks and measuring the effective parameters. These parameters do not remove the dependency of a flight process on the time and human decisions. In this paper, we used an HMM...
متن کاملTech Report A Variational HEM Algorithm for Clustering Hidden Markov Models
The hidden Markov model (HMM) is a generative model that treats sequential data under the assumption that each observation is conditioned on the state of a discrete hidden variable that evolves in time as a Markov chain. In this paper, we derive a novel algorithm to cluster HMMs through their probability distributions. We propose a hierarchical EM algorithm that i) clusters a given collection o...
متن کاملThe Infinite Markov Model
We present a nonparametric Bayesian method of estimating variable order Markov processes up to a theoretically infinite order. By extending a stick-breaking prior, which is usually defined on a unit interval, “vertically” to the trees of infinite depth associated with a hierarchical Chinese restaurant process, our model directly infers the hidden orders of Markov dependencies from which each sy...
متن کاملIntrusion Detection Using Evolutionary Hidden Markov Model
Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training, ...
متن کاملA Variational Formulation for GTM Through Time: Theoretical Foundations
Generative Topographic Mapping (GTM) is a latent variable model that, in its standard version, was conceived to provide clustering and visualization of multivariate, real-valued, i.i.d. data. It was also extended to deal with non-i.i.d. data such as multivariate time series in a variant called GTM Through Time (GTMTT), defined as a constrained Hidden Markov Model (HMM). In this technical report...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 18 شماره
صفحات -
تاریخ انتشار 2017